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DIFFUSION PROBLEM OF A CREEPING GAS. 

I. CALCULATION OF DISTRIBUTION FUNCTIONS OF A MOLECULAR GAS 

IN THE KNUDSEN LAYER 

S. P. Bakanov and V. I. Roldugin UDC 533.6.011 

A modified method of half range expansions has been used to find distribution func- 
tions of a molecular gas mixture inhomogeneous in concentration in the Knudsen layer. 

The study of dilute gas flow at finite Knudsen numbers can be carried out successfully 
within hydrodynamics; i.e., within models of a continuous medium, taking into account; how- 
ever, corrections related to the nonvanishing of the Knudsen number primarily in the boundary 
conditions. This approach assumes the introduction of "jumps" of macroscopic parameters, such 
as temperature, gas velocity, etc., at the phase boundary, and the problem reduces to more or 
less rigorous calculations or estimates of the corresponding coefficients, 

Unfortunately, a more general and informative method is that of finding the velocity dis- 
tribution function of gas molecules, including the layer immediately adjacent to the bound- 
ary -- the Knudsen layer. This approach requires the solution of a quite complicated kinetic 
equation, which cannot be done in the general case. 

The approximate methods adopted for this purpose consist of either replacing the Boltzmann 
equation by a model equation with its subsequent solution, or searching an approximate solu- 
tion of the Boltzmann equation itself by one of the well-known methods. In our opinion, the 
most fruitful method is that of the balf-range expansions, suggested in [I]. Its application 
in the original form is rendered difficult by the complexity of calculating the half-range 
moments of the Boltzmann collision integral, integral parentheses (see, e.g., [2]). Papers 
were later published [3-7], however, in which a modification of the method of [i] was sug- 
gested, making it possible to shorten the number of integral brackets requiring direct eval- 
uation, and to simplify the system of moment equations for determining the expansion coeffi- 
cients of the unknown molecular distribution functions. 

This modified method of half-range expansions was used to find molecular distribution 
functions of a simple gas in the Knudsen layer, which in turn made it possible to accurately 
calculate the isothermal [6] and thermal [7] coefficients of a creeping gas. 

An attempt of applying the half-range expansion method to the calculation of distribution 
functions for a gas mixture was undertaken in [8, 9]. The author of these papers, however, did 
not correctly calculate the half-range moments of the Boltzmann integral, a task involving 
great computational difficulty. In fact, the calculations of these expressions for a gas mix- 
ture is incomparably harder than in the case of a simple gas. Therefore, a modification simi- 
lar to [3-7] is of considerable interest. 

A detailed analysis of the procedure of constructing the moment equations for the kinetic 
Bo!tzmann equation was performed in [i0]. It was shown that the Onsager mutuality principle 
makes it possible to remove the uncertainty in the choice of moments. We take this fact into 
account in obtaining a system of equations for determining expansion coefficients in polyno- 
mials of velocity distribution functions of components of a binary gas mixture. 

In the present paper we establish a number of important relations between the half-range 
moments of the Boltzmann collision integral for a gas mixture, and we calculate the necessary 
moments. Based on that, we calculate molecular distribution functions in the Knudsen layer and 
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the diffusion coefficient of a creeping binary as mixture for arbitrary values of the ac- 
commodation coefficients of the tangential momentum of gas molecules on the surface of a sol- 
id. 

I. Consider the problem of slow stationary flow of a binary gas mixture in a plane-par- 
allel channel with distance 2d between the plates. At constant pressure and temperature the 
Boltzmann equation for the mixture components is 

(o) O In nl (oL, _ 0% 
i v i ~ - -  + h .i.~ ~ I~ (~  + ~j), (I) 

Oz Ox 

where ~i (i = i,(~) are small corrections to the solution of the zeroth-approximation Boltz- 
(the Maxwell function) z and x are coordinates directed, respectively, mann equation fi 

along and across the flow, and Iij(~i + ~j) is the linearized collision integral. 

We seek ~ in the form of expansions in polynomials in velocity (c i = v. m~./2kT: 
l Z 

1 Z a(hOPh (ci). q~ (ci, x) = ~-  
h=O 

(2) 

Restricting ourselves to the case N = 3, we choose for Pk(r the polynomials 

cix c~x P3 = CixCiz. Po = ciz, Pi = Ciz icix ] , P2 = Ciz lci=l ' 
(3) 

Substituting expansion (2) into Eq. (i), multiplying successively by the polynomials 
P~(c=) and integratin~ over velocity, we obtain a system of linear differential equations for 
the ~oefficients a (iY(x)" k 

2 

--Oz Jz + n~Ki ~ Nm = Kinia(hi)~ ) + ninj ~ .h"(i)MUi)~m /" . (4) 

Here 

2kT ~1/2 f _~2 Ki --- m,z~ / ; Jz = cis e idci; 

c 2 

Nz~, = S cixPt (ci) Ph (c~) e-  idci; 

~ t ~ )  n, t " - 3 - 3 .  8 / e  J e ' "Ic,  c~,l dEudcidci~Pz (c,)[Pk (c;) + Pk ( c ; i ) -  Pk (c i ) - -Ph  (c,~)]; 

1 S e-~-~ MI~ jl -- ~xs/2 Iv i - -  v~l dcidczdZi2Pz (ci) [Pk (cj)  - -  Ph (cj)l, 

(5) 

where e I are molecular velocities after collisions, and dZii is the differential scattering 
cross section. 

We note that the moments~7~ (i) and Mlk (ij) vanish if the indices i and k are of differ- 
ent parity. The moments~ik (i) ,'one of whose indices vanishes, also vanish. Also,~Tk(i) are 
symmetric in the permutation I ~ k, and Mlk(iJ) do not change under simultaneous interchange 
of the upper and lower indices. 

u(ii) Consider the integral brackets Mk(iJ) and r~ko : 

2 2 ~,,(u) 1 ~ - q - c  2 ,~ ~,,ho = ~ / e v~ - -  v~l dc~dc#Xt~P~ (c3 [ % - -  c=d, 
J (6) 

"" S c2 c2 M ~  ) = ~ e -  ~- 2jvi - -  v2ldcidc~dY, t~Ph (ci)[c~i - -  c=d, 
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and multiply the upper relation by (mj)~/2 and the second by (m i) ~/=, and add. By the momen- 
tum conservation law 

+ WmT ; = + 

and we obtain the first set of required relations 

M(q) ./Z2 M(~ ) ~/mii O. (7) kO V t l Z i  - t -  ~" 

Other relations are obtained by using the system of equations (4) in the limiting case 
%/d << I (% is a characteristic size of the order of the molecular mean free path). 

When the num~e~ of intermolecular collisions is large, the functions ~ (i), ~2(i) and the 
derivatives. 0_~_~i)~x vanish in the bulk of the gas removed from the walls (thls" follows from 
the requmrement of transition of expansion (2) to the Chapman--Enskog solution in the gas 
bulk), and the system of equations (4) is considerably simplified, Dividing for Dni/3z = 0 
(the Couette problem) the "bulk" equations with ~ = 1 and 3 by 2/~n. and n~, respectively, 
and denoting the mean gas velocity in the bulk, coinciding with the velocity ~f each of the 
mixture components, by the symbol ( v z >: 

< v~ > = -n/- 4 K~aSO, (8) 

we obtain the expression 8/~x 4v_~ on all left-band sides of the four equations. The last 
fact makes it possible to write ~own the following relations: 

9.e~13 - ~  "~'liWll3 - - t t ' 2 ~ w 1 3  

t ~ 1 3  " ~  _ - -  '/'tLvi31 

. ( 2 )  2 ~,~(22) - 

2 a,r{12) f/. to(2)  ~ A,4(ll) /./. i ~H33 , , l e V I 3  + ,,~,,,,13 ~ - ~  

�9 .(22) 2 
+ n,< ,13 Mi 2) 

" 2 M O  ) ~ M{12) 
(9) 

being a consequence of the identity of the right-hand sides of these equations. 

Keeping in mind that M ~ o~2,~ (2) ~ o~,~ (z) o~ (o12 = 1/2(oi + 02), ~I and ~2 are 
molecular diameters of the first and second sort, considered as impenetrable spheres), we ob- 
tain that to satisfy (9) it is necessary and sufficient that the following equalities hold 

1v1|3 ZV181 / H I 3  

1w33 1w33 l H 3 3  ~H33 

For 8/Sx < vz> = 0, ~ni/Sz # 0 (the problem of gas diffusion in a plane-parallel channel) 
we have from the equations of system (4) with I = 0.2, with account of relations (7) 

/•(l 1) i/f(12) ~d(22) 
o__ o _- __M<0'0 2) _ _ = ( i 1 )  

M(ll) M{22) 

It is interesting to point out that the accuracy with which the relationships (7), (i0), 
(ii) is satisfied varies. Equalities (7) follow directly from the momentum conservation law 
for colliding molecules and are, therefore, exact. A direct calculation of the moments Mo$:1), 
Mo$ z2), Mo$ 22) performed in [ii] verifies this result. In deriving equalities (i0) and (I!), 
expansion (2) was used extensively, i.e., the shape of approximate distribution functions 
near the walls, as well as the requirement of continuous transition of this function to the 
Chapman--Enskog distribution in the gas bulk. Hence~ obviously follows their approximate na- 
ture. A direct calculation of the moments M~ zl) M(~I) M(12) performed by us within the 2 ' ~13 ' ~13 ' 

model of solid impenetrable spheres for an arbitrary relation of molecular masses in the mix- 
ture, made it possible to estimate the accuracy with which equalities (i0) and (ii) are sat- 
isfied. The following expressions were obtained: 
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= -~Larcsin ._ + �9 

. .u , )  ^j(,,) I~ , I JK  _~, a r c s i n l / ~ - -  . ~ .+  - - ~ +  l % . a r c s i n l / ~  . ~r~13 = ,,,o2 - - I o  2 p~ 

, (12)  

(13) 

[( )(v' ) m,~(12) = lo~t, l f ~  3 1 1 ~t2 ___~' + __1 a rcs in l / -~  --  -~-  \-~-~-/ ' (14) 
16 p,~ 4 2 ~ ,u~ 

wh ere 

(2kT '~1/2 2 mi 
I o =  oj2; ~h = - -  ! 

\ ~m~ m~ + m~ 

Figure 1 shows curves of the dependences of Rx. = M(~')//~M (~I) ~' = 2~*('*)//~M!~) 
Rs = 2M~a)//~M~(~ a) on ~= (the expressions for M~[~ :) , M~i~), and M~'" were taken from jill). 
It is seen that for decreasing p= (or p~ for the other equalities, obtained by the simple 
replacement p~ 2 pa by means of (7)), equalities (lO)and (ii) become all the more accurate. 
The maximum deviation of the relations considered from unity does not exceed 20%. This value 
obviously estimates the accuracy of approximation (2) for the type of problems considered. 

These considerations show that the use of expressions (12), (13), (14) for moments of the 
collision integral within the approximate theory provides excessive accuracy which, on the 
one hand, complicates significantly the mathematical solution of the problem, and on the 
other, can lead (and often does) to physically absurd results (a simpler expression, ob- 
tained by means of relations (i0), and (ii), must be used). 

The method suggested allows accurate estimates of the moments of the Boltzmann collision 
integral even for molecules with arbitrary intermolecular interactions. 

It thus remained to calculate the four moments M~ ~), M~ a), M!~ x), M!~ a) . We have per- 
formed a corresponding calculation for the rigid sphere model, in which case we could sub- 
stantially simplify the procedure of calculation discussed in [2]. The following expressions 
were obtained for these moments: 

M~7 ) = - 4  - - 7 -  V ~ , ~  ~ + 

2 1 2 1 ( Y ~ +  V ~ )  + 

3 2 1 

V e~t2 3 (~t,la2) a/~ + 

3 ]  I V ~ - -  1 /E l  a } 

( 4 )  
M~ ') = Io V ~  I& V-~ +- i f -"  laz , 

M(2121) = 2o -~---  [ +  ~tl~t2 + 8 2--~ti~a212 j 
5 ~2 

[32  / - -  5 1 1 1 
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8 

15 4 1 
- 5 - ( ~ ) ~  + a v~-i~ 
1 1)  [ 

8 8 

1 1 1 1 

3 27 3 

77 1 
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I/. ~iRz(S~) 

Fig. 1. Ratio of approximately 
calculated moments to the accu- 
rate moments as a function of ma/ 
(ml + m=). 

( 
The moments M1{ 2=) and s=a are obtained from the moments MI; 11) and Ma~ 11) by replacing 

( ( 

2. We turn now to direct solution of the problem of diffusion creeping. The system of 
equations (4) must be supplemented by boundary conditions, taken to be Maxwellian: in molecu- 
lar collisions with the surface of the channel walls a fraction g. of molecules of the i-th ]. 
sort is reflected by diffusion, and I -- E i by mirror reflection, which gives 

g~ a(oi) 2 (d). (16) 

In solving the system of equations (4), we restrict ourselves to the case of a dilute 
binary gas mixture; i.e., we assume a small number of molecules of the second sort na/n << 1 
with collision frequency Keo[ana << K1olnl, and we seek a i)(x) in the form 

a(hl) a~'0) + n~ ~k- (17) 
n 

We note that the boundary conditions for ak (I) and ~. are of the form (16). We substitute 
o 

expansion (17) into system (4). In the zeroth approximation in na/n we have a set of equations 
for a{o i), which for boundary c o.nditions (16) satisfies the zeroth-order solution. Therefore, 
in what follows one can put ak{o i) - 0 without restricting the generality of approach, 

/ ~Retaining terms linear in the ratio nl/n, we obtain a system of equations determining 
a~ ~ (x) : 

3 

& + ~ ~=N~ o ~(~)~ W)(~) : o 5 / -  - ~,,,,, ) ( i 8 )  
h~O 

and a system of equations for gk(X): 

3 

- -  lK i  ~ J z +  KiNzh 
h~O 

- - -  ~ ! l ) h  ~ n a(2)M!) 2~ ] ~.,~)~-,~ ,~ j : o .  (19) 

The solution of system (18) is found by standard procedures. To determine the function 
~ it is convenient to use relations (7) and (i0) between moments of the Boltzmann collision 
integral, which makes it possible to integrate quite easily the two equations of system (19)o 

The general result can be represented in the form 

I 2 ~ C~7~ ch ~x, k O, 2, I 
a~ 2) (x) : 8okE + { ~=~ 

i 2 (20) 
~='~lC~?t{~ sh a~x, k 1, 3, 
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~ = A6ok + 
[Sh ch aoX q- ~ C~hh~ ch ~x,,k -- O, 2, 

r 

1~ sh aox q- ~] C~hh~ sh a~x, k = 1, 3. 

(21) 

Here 8kr is the Kronecker symbol. The eigenvalues ar, the coefficients E, Ykr, Akr, and the 
integration constants A, Cr, Bk are given in the Appendix. 

It is now easy to write down the mean bulk velocity of the binary gas mixture 

i=I 

where Pi is the partial density of component i, and i, p = px + Oz. Substitution of expres- 
sions (20) and (21) gives 

<v,> =D,2 P~ cOlnn~ [m~ r A ~ ] 
-- mt E q- OOq ch aqx . (22) 

q = 0  

We provide here the mutual diffusion coefficient of the mixture components according to the 
first approximation of the Chapman--Enskog method [Ii] 

1 k T  1 
Di2 - -  _ _  

2 n I /mi ra2  ~v, OOaJ(12) 

The symbol ~q denotes the functions describing the velocity profile of tbe gas in the Knudsen 
layer: 

~ = - -  ~ E ao ,+  ?ori~,r---~?2~ , r = l ,  2. 

For aid >> 1 the last term in (22) tends to zero in the gas bulk, and the velocity of gas 
diffusion slip can be determined as 

UDs = D,2 p, a ln ni [ m~ V /  -~  A ] a ln n, 
p Oz ~ - -  -~i E = KDs Di~ 0---'---[-- ' (23) 

where KDS is the coefficient of diffusion slip. 

For ei § 0 Eq. (23) acquires the quite simple form: 

%s = D,z Oz ---m-i-- m, gl 

and for ~: = r coincides with that obtained in [12] within the approximate Maxwell method. 
For arbitrary values of ei the diffusion slip coefficient can be represented in the form 

KDS_ = m~ _ V F ~  2--e~ e2 . I 
;hi e, 2 - - e  2 1 ~ .  e, fh • 

2--s t  1~ 

{ e' Hi+( el ) 2 e2 [Qo-]- ei Qi- t - 
• F ~  2 - - s j  2 - - e l  H2 + 2- -e , ,  2 - - e i  

1 + 2--s, Q2 Fo+ 2--e2 2--e~ 

494 



# ~ - . . . . . . . . . . . . . . . .  4 
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_ ' }  I ............ :I j 
Fig. 2. Diffusion slip coefficient as a function of ol/~z for 
ml = m2 (a) and as a function of ml/(ml + m~) for ~: = ~2 (b): i) 
results of the present work, 2) [13]; 3) [14]; 4) [15]; 5) [16]; 
6 )  [ 1 7 ] .  

where Fi, H i , and Qi, are algebraic functions of the parameters Yij and Aij. 

A calculation shows that the quantity KDS depends strongly on the relation between the 
molecular diameters of the mixture components. 

Figure 2 shows the dependence of the diffusion slip coefficient on the molecular diameter 
(for ml = m2) and on the molecular mass (for o: = 02), obtained in the present study and in 
[13-17]. It is seen from the figure that all the theoretical calculations for ~ = ~2 are in 
satisfactory agreement between them and with experiment [17]. A significant deviation between 
the results of [13] and the remaining calculations is obtained for oI << o2, 

All the calculations given are based on one or another approximation, therefore the prob- 
lem of the source of behavior of the curve of KDS in the region ~ << ~ remains open, Un- 
fortunately, the experimental data [17] also do not allow a clear preference of one theory or 
another, since they were obtained for values oi ~ ~ 2 ,  

The necessity thus exists of experimental measurements of the diffusion slip velocity for 
~ << ~2, as well as calculations by the proposed scheme (or by methods of [13-16]), in which 
a large number of terms in the distribution function expansion. Such calculations will be 
performed shortly by the present authors. 

APPENDIX 

We provide the explicit shapes of the coefficients appearing in expressions (21) and (20), 

E =  ~V~- K2 Olnn_____~ ; 
M(12)  oo rt~ Oz 

{ mo + MZ s___ + ,,,oo 

--4 aj V-~ 1 - L  " ?o J =  1; 

"/3J = 2 n  n S 2,~jM<~Z ) �9 S M I ] 2 )  4 M ( 2 2 ) .  - -  , = - -  33 , 

2 2 O~j~2~l 3 (4--~)M(22)M(22). 
) 2 j =  1 - -  8nZM<2o2)M<~2) ; W =  - - ~  oo 3z , 

r o = . . / s  ~ ( 1 )  1 / ~  . 
_ _  V ~  ~ 2 2  ~ 2 (4  ~ )  2 o~11 ) - -  ~ )  , ~i ~3; 

(Z o 
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INSTABILITY OF THE SELF-SIMILAR FRONT OF A PHASE TRANSITION 

Yu. Ao Buevich UDC 536.42 

The stability of self-similar diffusional processes with respect to small disturban- 
ces of plane, cylindrical, and spherical phase interfaces is investigated. 

Self-similar processes of diffusion and heat conduction accompanying phase or chemical 
transformations are very common both in nature and in engineering. Many actual processes of 
vaporization, sublimation and condensation, dissolution, melting and crystallization, abla- 
tion, combustion, etc., enter precisely into self-similar asymptotic forms over a certain 
time interval dependent on the specifics of the initial conditions. In many cases, however, 
such an asymptotic stage of the process proves to be unstable, and the front of the phase in- 
terface or chemical reaction is considerably distorted. Two main forms of disruption of stab- 
ility are possible in this case. Sometimes with weak "supercriticality," i.e., a small de- 
parture from the surface of neutral stability in parametric space in the region of instabil- 
ity, a regular periodic cellular structure appears at the front, the amplitude of which grows 
monotonically from zero with an increase in supercriticality. Sometimes upon a transition 
through the indicated surface disturbances of finite amplitude develop immediately at the 
front: dendrites appear which, losing stability in turn, form peculiar branched dendritic 
structures. Both these forms have been observed, e.g., in crystallization from melts and solu- 
tions [i]. A well-known example of the formation of dendrites is the appearance of hoarfrost 
or frost patterns on glasses upon the sudden cooling of air, when it becomes supersaturated 
with water vapor. 

The questions of the conditions and the form of the disruption of stability are important 
in a scientific and an applied respect, since the onset of instability can radically alter 
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